A region quadtree representation of an image can be normalized thereby
yielding a quadtree that contains the least number of nodes in O(s(2)
log(2)s) time where s is the length of the grid. A new algorithm is pr
oposed whose asymptotic time bound is the same but whose first part on
ly takes O(s(2)). It is shown empirically to be able to produce the no
rmalized quadtrees for a number of images in real applications.