THE NUMBER OF DEGREE RESTRICTED MAPS ON GENERAL SURFACES

Authors
Citation
Zc. Gao, THE NUMBER OF DEGREE RESTRICTED MAPS ON GENERAL SURFACES, Discrete mathematics, 123(1-3), 1993, pp. 47-63
Citations number
8
Categorie Soggetti
Mathematics, Pure",Mathematics
Journal title
ISSN journal
0012365X
Volume
123
Issue
1-3
Year of publication
1993
Pages
47 - 63
Database
ISI
SICI code
0012-365X(1993)123:1-3<47:TNODRM>2.0.ZU;2-H
Abstract
Let D be a finite set of positive integers with maximum bigger than tw o and ($) over tilde$$ m(g,n)(($) over tilde$$ m(g,n)) be the number o f n-edged rooted maps on the orientable (nonorientable) surface of typ e g whose face degrees (or, dually, vertex degrees) all lie in D. Defi ne ($) over tilde$$ m(g)(x)=Sigma(n greater than or equal to 0) ($) ov er tilde$$ m(g,n)x(n), ($) over tilde$$ m(g)(x)=Sigma(n greater than o r equal to 0) ($) over tilde$$ m(g,n)x(n). We shaw that ($) over tilde $$ m(g)(x) and ($) over tilde$$ m(g),(x) are algebraic functions of a certain form. Asymptotic expressions for ($) over tilde$$ m(g,n) and ( $) over tilde$$ m(g,n) are also derived for some special sets D.