INVARIANT-THEORY OF THE DUAL PAIRS (SO-ASTERISK(2N), SP(2K,C)) AND (SP(2N,R), O(N))

Citation
Ey. Leung et T. Tonthat, INVARIANT-THEORY OF THE DUAL PAIRS (SO-ASTERISK(2N), SP(2K,C)) AND (SP(2N,R), O(N)), Proceedings of the American Mathematical Society, 120(1), 1994, pp. 53-65
Citations number
20
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
00029939
Volume
120
Issue
1
Year of publication
1994
Pages
53 - 65
Database
ISI
SICI code
0002-9939(1994)120:1<53:IOTDP(>2.0.ZU;2-5
Abstract
Let G = Sp(2k, C) or O(N) and G' = SO(2n) or Sp(2n, R). The adjoint r epresentation of G' on its Lie algebra G' gives rise to the coadjoint representation of G' on the symmetric algebra of ah polynomial functio ns on G'. The polynomials that are fixed by the restriction of the coa djoint representation to a block diagonal subgroup K' of G' form a sub algebra called the algebra of K'-invariants. Using the theory of invar iants of Procesi for the ''dual pair'' (G', G), a finite set of genera tors of this algebra is explicitly determined.