T. Shinomura et al., THE INDUCTION OF SEED-GERMINATION IN ARABIDOPSIS-THALIANA IS REGULATED PRINCIPALLY BY PHYTOCHROME B AND SECONDARILY BY PHYTOCHROME-A, Plant physiology, 104(2), 1994, pp. 363-371
We examined whether spectrally active phytochrome A (PhyA) and phytoch
rome B (PhyB) play specific roles in the induction of seed germination
in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutant
s, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102:
269-277) and hy3-Bo64 (J. Reed, P. Nagpal, D.S. Poole, M. Furuya, I. C
hory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotyp
e imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant di
d not germinate, whereas the fre1 (phyA) mutant germinated at a rate o
f 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%.
By contrast, seeds of all genotypes germinated to nearly 100% when pl
ated in continuous irradiation with white or red light. When plated in
continuous far-red tight, however, frequencies of seed germination of
the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, r
espectively, suggesting that PhyB in the red-absorbing form prevents P
hyA-dependent germination under continuous far-red light. When irradia
ted briefly with red or far-red light after imbibition for 1 h, a typi
cal photoreversible effect on seed germination was observed in the fre
1 mutant and the WT but not in the hy3 mutant. In contrast, when allow
ed to imbibe in the dark for 24 to 48 h and exposed to red light, the
seed germination frequencies of the hy3 mutant were more than 40%. Imm
unoblot analyses of the mutant seeds showed that PhyB apoprotein accum
ulated in dormant seeds of the WT and the fre1 mutant as much as in th
e seeds that had imbibed. In contrast, PhyA apoprotein, although detec
ted in etiolated seedlings grown in the dark for 5 d, was not detectab
le in the dormant seeds of the WT and the hy3 mutant. The above physio
logical and immunochemical evidence indicates that PhyB in the far-red
-absorbing form was stored in the Arabidopsis seeds and resulted in ge
rmination in the dark. Hence, PhyA does not play any role in dark germ
ination but induces germination under continuous irradiation with far-
red light. Finally, we examined seeds from a signal transduction mutan
t, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photor
eversible responses of germination on aqueous agar plates, and the det
1/ hy3 double mutant seeds did not. Hence, DET1 is likely to ad in a d
istinct pathway from PhyB in the photoregulation of seed germination.