SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH

Authors
Citation
G. Alexopoulos, SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH, Proceedings of the American Mathematical Society, 120(3), 1994, pp. 973-979
Citations number
24
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
00029939
Volume
120
Issue
3
Year of publication
1994
Pages
973 - 979
Database
ISI
SICI code
0002-9939(1994)120:3<973:SMOLOP>2.0.ZU;2-3
Abstract
Let L be a left invariant sub-Laplacian on a connected Lie group G of polynomial volume growth, and let {E(lambda), lambda greater-than-or-e qual-to 0} be the spectral resolution of L and m a bounded Borel measu rable function on [0, infinity) . In this article we give a sufficient condition on m for the operator m(L) = integral-infinity/0 m(lambda) dE(lambda) to extend to an operator bounded on L(p)(G), 1 < p < infini ty, and also from L1(G) to weak-L1(G).