THE EXTENDED LOW HIERARCHY IS AN INFINITE HIERARCHY

Authors
Citation
Mj. Sheu et Tj. Long, THE EXTENDED LOW HIERARCHY IS AN INFINITE HIERARCHY, SIAM journal on computing, 23(3), 1994, pp. 488-509
Citations number
13
Categorie Soggetti
Computer Sciences","Computer Science Theory & Methods",Mathematics
Journal title
ISSN journal
00975397
Volume
23
Issue
3
Year of publication
1994
Pages
488 - 509
Database
ISI
SICI code
0097-5397(1994)23:3<488:TELHIA>2.0.ZU;2-S
Abstract
Balcazar, Book, and Schoning introduced the extended low hierarchy bas ed on the SIGMA-levels of the polynomial-time hierarchy as follows: fo r k greater-than-or-equal-to 1, level k of the extended low hierarchy is the set EL(k)P, SIGMA {A \ SIGMA(k)P(A) subset-or-equal-to SIGMA(k- 1)P (A + SAT)}. Allender and Hemachandra and Long and Sheu introduced refinements of the extended low hierarchy based on the DELTA- and THET A- -levels, respectively, of the polynomial-time hierarchy: for k grea ter-than-or-equal-to 2, EL(k)P, DELTA = {A \ DELTA(k)P (A) subset-or-e qual-to DELTA(k-1)P (A + SAT)} and EL(k)P, THETA = {A \ THETA(k)P (A) subset-or-equal-to THETA(k-1)P (A + SAT)). This paper shows that the e xtended low hierarchy is properly infinite by showing, for k greater-t han-or-equal-to 2, that EL(k)P, SIGMA not-subset-or-equal-to EL(k+1)P, THETA not-subset-or-equal-to EL(k+1)P, DELTA not-subset-or-equal-to E L(k+1)P, SIGMA The proofs use the circuit lower bound techniques of Ha stad and Ko. As corollaries to the constructions, for k greater-than-o r-equal-to 2, oracle sets B(k), C(k), and D(k), such that PH(B(k)) = S IGMA(k)P(B(k)) not-superset-or-equal-to DELTA(k)P (B(k)), PH(C(k)) = D ELTA(k)P (C(k)) not-superset-or-equal-to THETA(k)P (C(k)), and PH(D(k) ) = THETA(k)P(D(k)) not-superset-or-equal-to SIGMA(k-1)P (D(k)) are ob tained.