Jm. Victor et al., THE NUMBER OF CONTACTS IN A SELF-AVOIDING WALK OF VARIABLE RADIUS OF GYRATION IN 2 AND 3 DIMENSIONS, The Journal of chemical physics, 100(7), 1994, pp. 5372-5377
A simple scaling law is proposed for the dependence of the number of c
ontacts on the radius of gyration of a self-avoiding walk (SAW). We te
st our proposal on SAWs generated by a Monte Carlo simulation on squar
e and cubic lattices. The distribution of the number of contacts is th
en combined with the distribution of configurations previously derived
to deduce the free energy of a polymer chain for low values of the in
teraction parameter chi. As compared to the free energy of Flory, the
new expression takes a much better account of the spatial correlations
between distant monomers of the chain.