Given a proper antistable rational transfer function g, a balanced rea
lization of g is constructed as a matrix representation of the abstrac
t shift realization introduced by Fuhrmann (1976). The required basis
is constructed as a union of sets of polynomials orthogonal with respe
ct to weights given by the squares of the absolute values of minimal d
egree Schmidt vectors of the corresponding Hankel operators. This exte
nds results of Fuhrmann (1991), obtained in the generic case.