WEAKLY CONVERGENT NONPARAMETRIC FORECASTING OF STATIONARY TIME-SERIES

Citation
G. Morvai et al., WEAKLY CONVERGENT NONPARAMETRIC FORECASTING OF STATIONARY TIME-SERIES, IEEE transactions on information theory, 43(2), 1997, pp. 483-498
Citations number
38
Categorie Soggetti
Information Science & Library Science","Engineering, Eletrical & Electronic
ISSN journal
00189448
Volume
43
Issue
2
Year of publication
1997
Pages
483 - 498
Database
ISI
SICI code
0018-9448(1997)43:2<483:WCNFOS>2.0.ZU;2-9
Abstract
The conditional distribution of the next outcome given the infinite pa st of a stationary process can be inferred from finite but growing seg ments of the past, Several schemes are known for constructing pointwis e consistent estimates, but they all demand prohibitive amounts of inp ut data. In this paper we consider real-valued time series and constru ct conditional distribution estimates that make much more efficient us e of the input data, The estimates are consistent in a weak sense; and the question whether they are pointwise-consistent is still open, For finite-alphabet processes one may rely on a universal data compressio n scheme like the Lempel-Ziv algorithm to construct conditional probab ility mass function estimates that are consistent in expected informat ion divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infi nite alphabet, but weak consistency can, Some applications of the esti mates to on-line forecasting, regression, and classification are discu ssed.