MOMENT-MATCHING AND BEST ENTROPY ESTIMATION

Citation
P. Borwein et As. Lewis, MOMENT-MATCHING AND BEST ENTROPY ESTIMATION, Journal of mathematical analysis and applications, 185(3), 1994, pp. 596-604
Citations number
24
Categorie Soggetti
Mathematics, Pure",Mathematics,Mathematics,Mathematics
ISSN journal
0022247X
Volume
185
Issue
3
Year of publication
1994
Pages
596 - 604
Database
ISI
SICI code
0022-247X(1994)185:3<596:MABEE>2.0.ZU;2-T
Abstract
Given the first n moments of an unknown function xBAR on the unit inte rval, a common estimate of xBAR is psi(pi(n)), where pi(n) is a polyno mial of degree n taking values in a prescribed interval, psi is a give n monotone function, and pi(n) is chosen so that the moments of psi(pi (n)) equal those of xBAR. This moment-matching procedure is closely re lated to best entropy estimation of xBAR: two classical cases arise wh en psi is the exponential function (corresponding to the Boltzmann-Sha nnon entropy) and the reciprocal function (corresponding to the Burg e ntropy). General conditions ensuring the existence and uniqueness of p i(n) are given using convex programming duality techniques, and it is shown that the estimate psi(pi(n)) converges uniformly to xBAR providi ng xBAR is sufficiently smooth. (C) 1994 Academic Press, Inc.