The analysis of repeated measures data can be conducted efficiently us
ing a two-level random coefficients model. A standard assumption is th
at the within-individual (level 1) residuals are uncorrelated. In some
cases, especially where measurements are made close together in time,
this may not be reasonable and this additional correlation structure
should also be modelled. A time series model for such data is proposed
which consists of a standard multilevel model for repeated measures d
ata augmented by an autocorrelation model for the level 1 residuals. F
irst- and second-order autoregressive models are considered in detail,
together with a seasonal component. Both discrete and continuous time
are considered and it is shown how the autocorrelation parameters can
themselves be structured in terms of further explanatory variables. T
he models are fitted to a data set consisting of repeated height measu
rements on children.