THE IRREDUNDANT RAMSEY NUMBER S(3,3,3)=13

Citation
Ej. Cockayne et Cm. Mynhardt, THE IRREDUNDANT RAMSEY NUMBER S(3,3,3)=13, Journal of graph theory, 18(6), 1994, pp. 595-604
Citations number
18
Categorie Soggetti
Mathematics, Pure",Mathematics
Journal title
ISSN journal
03649024
Volume
18
Issue
6
Year of publication
1994
Pages
595 - 604
Database
ISI
SICI code
0364-9024(1994)18:6<595:TIRNS>2.0.ZU;2-2
Abstract
Let G1, G2,..., G(t) be an arbitrary t-edge coloring of K(n), where fo r each i is-an-element-of {1, 2,..., t}, G(i) is the spanning subgraph of K(n) consisting of all edges colored with the ith color. The irred undant Ramsey number s(q1, q2,..., q(t)) is defined as the smallest in teger n such that for any t-edge coloring of K(n), G(i)BAR has an irre dundant set of size q(i) for at least one i is-an-element-of {1, 2, .. ., t}. It is proved that s(3, 3, 3) = 13, a result that improves the known bounds 12 less-than-or-equal-to s(3,3,3) less-than-or-equal-to 1 4. (C) 1994 John Wiley & Sons, Inc.