UNIQUENESS OF POSITIVE SOLUTIONS FOR QUASI-LINEAR ELLIPTIC-EQUATIONS WHEN A PARAMETER IS LARGE

Authors
Citation
Zm. Guo et Jrl. Webb, UNIQUENESS OF POSITIVE SOLUTIONS FOR QUASI-LINEAR ELLIPTIC-EQUATIONS WHEN A PARAMETER IS LARGE, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 124, 1994, pp. 189-198
Citations number
14
Categorie Soggetti
Mathematics, General",Mathematics,Mathematics
ISSN journal
03082105
Volume
124
Year of publication
1994
Part
1
Pages
189 - 198
Database
ISI
SICI code
0308-2105(1994)124:<189:UOPSFQ>2.0.ZU;2-L
Abstract
Existence and uniqueness results are proved for positive solutions of a class of quasilinear elliptic equations in a domain OMEGA subset-of R(N) via a generalisation of Serrin's sweeping principle. In the case when OMEGA is an annulus, it is shown that the solution is radially sy mmetric.