As. Astapchik et al., STOCHASTIC-MODEL FOR A WAVE-LIKE EXOTHERMAL REACTION IN CONDENSED HETEROGENEOUS SYSTEMS, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 47(1), 1993, pp. 319-326
The relationship between the stochastic and deterministic approaches t
o the description of the dynamic behavior for a nonlinear reacting sys
tem is studied. A self-propagating exothermal reaction in a heterogene
ous medium has been chosen as an example. A stochastic model for this
phenomenon is developed. The system is composed of cells characterized
by temperature and degree of conversion, their transformation probabi
lity being dependent on temperature. Computer simulation showed that s
tochasticity reveals itself in the generation of disturbances that are
absent in the deterministic model. For a well-developed steady-state
regime, the distributions of the mean temperature and degree of conver
sion are close to those given by the deterministic model. Under the co
nditions of planar-wave-front instability, the stochastic model posses
ses a mechanism for spontaneous transfer to a stable regime from arbit
rary initial conditions (temperature distribution, etc.) due to origin
ation, propagation, and disintegration of disturbances. Such behavior
agrees with experimental data and is not predicted by the deterministi
c model.