We derive reduced field equations describing two cases of optical cavi
ties driven by an external coherent field, taking into account the inf
luence of transverse effects. For the passive-cavity case, we focus on
the transistor characteristic and the onset of optical bistability. W
e prove that, depending on the sign of the detuning, different equatio
ns are needed. A global description of the field is possible in terms
of a generalized Ginzburg-Landau equation, unless the detuning is fini
te and positive. That case requires a modal expansion. Furthermore, th
e - good-cavity limit is regular, implying the same differentiation ar
-cording to the sign of the detuning. For the active-cavity case, the
same dependence on the sip of the detuning is found. A global descript
ion is obtained only for negative detunings. The good-cavity limit is
described by a unique equation for all detunings.