A PARTIAL M = (2K-CYCLE SYSTEM OF ORDER-N CAN BE EMBEDDED IN AN M-CYCLE SYSTEM OF ORDER (2N+1)M(1))

Citation
Cc. Lindner et Ca. Rodger, A PARTIAL M = (2K-CYCLE SYSTEM OF ORDER-N CAN BE EMBEDDED IN AN M-CYCLE SYSTEM OF ORDER (2N+1)M(1)), Discrete mathematics, 117(1-3), 1993, pp. 151-159
Citations number
10
Categorie Soggetti
Mathematics, Pure",Mathematics
Journal title
ISSN journal
0012365X
Volume
117
Issue
1-3
Year of publication
1993
Pages
151 - 159
Database
ISI
SICI code
0012-365X(1993)117:1-3<151:APM=(S>2.0.ZU;2-9
Abstract
A generalization of Cruse's Theorem on embedding partial idempotent co mmutative latin squares developed and used to show that a partial m = (2k + 1)-cycle system of order n can be embedded in an m-cycle system of order tm for every odd t greater-than-or-equal-to (2n + 1).