STRONGLY EXTREME-POINTS AND THE RADON-NIKODYM PROPERTY

Authors
Citation
Zb. Hu, STRONGLY EXTREME-POINTS AND THE RADON-NIKODYM PROPERTY, Proceedings of the American Mathematical Society, 118(4), 1993, pp. 1167-1171
Citations number
5
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
00029939
Volume
118
Issue
4
Year of publication
1993
Pages
1167 - 1171
Database
ISI
SICI code
0002-9939(1993)118:4<1167:SEATRP>2.0.ZU;2-O
Abstract
We prove that if K is a bounded and convex subset of a Banach space X and x is a point in K, then x is a strongly extreme point of K if and only if x is a strongly extreme point of KBAR which is the weak* clos ure of K in X* . We also prove that a Banach space X has the Radon-Ni kodym property if and only if for any equivalent norm on X, the unit b all has a strongly extreme point.