RANKIN-SELBERG CONVOLUTIONS FOR SO(2L- LOCAL THEORY(1) X GL(N) )

Authors
Citation
D. Soudry, RANKIN-SELBERG CONVOLUTIONS FOR SO(2L- LOCAL THEORY(1) X GL(N) ), Memoirs of the American Mathematical Society, 105(500), 1993, pp. 180000003-100
Citations number
19
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
00659266
Volume
105
Issue
500
Year of publication
1993
Pages
180000003 - 100
Database
ISI
SICI code
0065-9266(1993)105:500<180000003:RCFSLT>2.0.ZU;2-O
Abstract
In this Memoir we study the local theory for Rankin Selberg convolutio ns for the degree 2ln standard L-function of generic representations o f SO2l+1(F) x GL(n)(G) over a local field F. We prove the convergence in a half plane of the local integrals, their meromorphic continuation (if F is archimedean only for l greater-than-or-equal-to n) and the e xistence of local gamma and L-factor. Our main result is that of the m ultiplicativity of the gamma factor (l < n, first variable). As a cons equence of the proof of this multiplicativity we obtain the unramified computation of the local integral, when all data is unramified.