Sl. Kalla et Hg. Khajah, TAN METHOD APPROXIMATION OF SOME INTEGRALS RELATED TO RADIATION-FIELDPROBLEMS, Computers & mathematics with applications, 33(5), 1997, pp. 21-27
A more general and unified form of the Hubbell rectangular source inte
gral is defined as H[(a,b,p,lambda,mu,nu)(alpha,beta,gamma)] = integra
l(0)(b) x(lambda)(x(2) + p)(nu) (1 - x(2)/b(2))(mu) F (alpha,beta,gamm
a; - a(2)/x(2) + p) dx subject to gamma > beta > 0; a, b, p > 0; lambd
a, mu > -1. Special cases of this integral occur in some radiation fie
ld problems. Under certain restrictions, H may be expressed in terms o
f Appell's double hypergeometric functions F-2 and F-4. Tau method app
roximations of the Gauss hypergeometric function F-2(1) are employed i
n the evaluation of this integral, and upper bound estimates on the Ta
u error are given.