TAN METHOD APPROXIMATION OF SOME INTEGRALS RELATED TO RADIATION-FIELDPROBLEMS

Citation
Sl. Kalla et Hg. Khajah, TAN METHOD APPROXIMATION OF SOME INTEGRALS RELATED TO RADIATION-FIELDPROBLEMS, Computers & mathematics with applications, 33(5), 1997, pp. 21-27
Citations number
21
Categorie Soggetti
Computer Sciences",Mathematics,"Computer Science Interdisciplinary Applications
ISSN journal
08981221
Volume
33
Issue
5
Year of publication
1997
Pages
21 - 27
Database
ISI
SICI code
0898-1221(1997)33:5<21:TMAOSI>2.0.ZU;2-2
Abstract
A more general and unified form of the Hubbell rectangular source inte gral is defined as H[(a,b,p,lambda,mu,nu)(alpha,beta,gamma)] = integra l(0)(b) x(lambda)(x(2) + p)(nu) (1 - x(2)/b(2))(mu) F (alpha,beta,gamm a; - a(2)/x(2) + p) dx subject to gamma > beta > 0; a, b, p > 0; lambd a, mu > -1. Special cases of this integral occur in some radiation fie ld problems. Under certain restrictions, H may be expressed in terms o f Appell's double hypergeometric functions F-2 and F-4. Tau method app roximations of the Gauss hypergeometric function F-2(1) are employed i n the evaluation of this integral, and upper bound estimates on the Ta u error are given.