ASSESSMENT OF AN IN-VITRO BLOOD-BRAIN-BARRIER MODEL USING SEVERAL [MET5]ENKEPHALIN OPIOID ANALOGS

Citation
Sj. Weber et al., ASSESSMENT OF AN IN-VITRO BLOOD-BRAIN-BARRIER MODEL USING SEVERAL [MET5]ENKEPHALIN OPIOID ANALOGS, The Journal of pharmacology and experimental therapeutics, 266(3), 1993, pp. 1649-1655
Citations number
33
Categorie Soggetti
Pharmacology & Pharmacy
ISSN journal
00223565
Volume
266
Issue
3
Year of publication
1993
Pages
1649 - 1655
Database
ISI
SICI code
0022-3565(1993)266:3<1649:AOAIBM>2.0.ZU;2-B
Abstract
Confluent monolayers of primary and continuous passaged cultures of bo vine brain microvessel endothelial cells (BMEC) have been suggested to model the blood-brain barrier (BBB). Increased lipophilicity has been previously suggested to increase BBB penetration. The intent of this study was to examine the effect that structural modifications of the [ Met5]enkephalin analog DPDPE had on lipophilicity and passage across t he BMEC. The BMEC consisted of a monolayer of confluent primary BMEC g rown on polycarbonate (10 mum) filters. Permeability coefficients were calculated on the basis of the diffusion of peptides across the BMEC in a Side-Bi-Side(TM) diffusion chamber. Lipophilicity of the peptides examined was determined by using reversed-phase HPLC and calculating the capacity factor (k). Diffusion across the BMEC (for all peptides e xamined) was linear from 15 to 120 min; therefore, these time points w ere used to calculate permeability coefficients. Permeability coeffici ents ranged from 14.34 to 92.00 cm/min (x 10(-4)) , with [rho-ClPhe4,4 ']biphalin the highest. Analysis of variance coupled with the Newman-K euls test showed significantly greater (P < .01) passage of select pep tide analogs across the BMEC, including [rho-ClPhe4,4']biphalin, [rho- ClPhe4]DPDPE and reduced DPDPE. Interestingly, upon passage across the confluent monolayer, reduced DPDPE was converted to cyclized DPDPE. C alculated HPLC capacity factors ranged from 3.82 to 12.50. The most li pophilic peptide (highest) examined was acetylated Phe0-DPDPE. Analysi s of the regression line of permeability coefficients plotted against capacity factors yielded a correlation coefficient of 0.745 (P < .01). The data provided in this study offer strong evidence that increasing peptide lipophilicity enhances passage across the BMEC. The greatest BMEC permeability coefficients, though not the greatest capacity facto rs, were obtained with peptides having a chlorohalogenation at the Phe 4 residue, suggesting that factors other than lipophilicity may play a role in BMEC passage. Comparison of the permeability coefficients obt ained from the BMEC system with those obtained from in vivo BBB studie s suggest that the BMEC system may be very useful in predicting peptid e (analog) passage across the in vivo BBB.