MAXIMAL PARTIAL SPREADS AND THE MODULAR N-QUEEN PROBLEM

Authors
Citation
O. Heden, MAXIMAL PARTIAL SPREADS AND THE MODULAR N-QUEEN PROBLEM, Discrete mathematics, 120(1-3), 1993, pp. 75-91
Citations number
17
Categorie Soggetti
Mathematics, Pure",Mathematics
Journal title
ISSN journal
0012365X
Volume
120
Issue
1-3
Year of publication
1993
Pages
75 - 91
Database
ISI
SICI code
0012-365X(1993)120:1-3<75:MPSATM>2.0.ZU;2-N
Abstract
We prove that for any integer n in the interval (5q2 + 4q - 1)/8 less- than-or-equal-to n less-than-or-equal-to q2 - q + 2 there is a maximal partial spread of size n in PG (3, q) where q is odd and q greater-th an-or-equal-to 7. We also prove that there are maximal partial spreads of size (q2 + 3)/2 when gcd(q + 1,24)=2 or 4 and of size (q2 + 2 + 5) /2 when gcd (q + 1, 24) = 4.