Units in integral group rings over Solomon fields

Citation
O. Neisse et Sk. Sehgal, Units in integral group rings over Solomon fields, COMM ALGEB, 26(12), 1998, pp. 3985-3991
Citations number
6
Categorie Soggetti
Mathematics
Journal title
COMMUNICATIONS IN ALGEBRA
ISSN journal
00927872 → ACNP
Volume
26
Issue
12
Year of publication
1998
Pages
3985 - 3991
Database
ISI
SICI code
0092-7872(1998)26:12<3985:UIIGRO>2.0.ZU;2-R
Abstract
Let G be a finite group of order n. It is known that the Bass-cyclic units and bicyclic units generate a subgroup of finite index in the group of unit s of OG, where O is the ring of integers in the Brauer field Q(zeta(n)). We now prove a finite index theorem for the Solomon field Q(zeta(2k)), where k = Pi(p\n) p.