Non-quasianalytic classes of functions and existence of invariant subspaces

Citation
K. Kellay et M. Zarrabi, Non-quasianalytic classes of functions and existence of invariant subspaces, CR AC S I, 327(9), 1998, pp. 793-796
Citations number
9
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
327
Issue
9
Year of publication
1998
Pages
793 - 796
Database
ISI
SICI code
0764-4442(199811)327:9<793:NCOFAE>2.0.ZU;2-F
Abstract
We prove that some classes of functions defined on a compact set in the com plex plane with planar Lebesgue measure zero, are non-quasianalytic. We par ticularly treat the Carleman classes and classes of functions having asymto tically holomorphic continuation. Combining this with Dyn 'kin's functional calculus based on the Cauchy-Green formula, we establish the existence of invariant subspaces for operators for which a part of the spectrum is of pl anar Lebesgue measure zero, provided that the resolvent has a moderate grow th near this part of the spectrum. (C) Academie des Sciences/Elsevier, Pari s.