Annihilating fields of standard modules of sl(2,C)(similar to) and combinatorial identities

Citation
A. Meurman et M. Primc, Annihilating fields of standard modules of sl(2,C)(similar to) and combinatorial identities, MEM AM MATH, 137(652), 1999, pp. 1
Citations number
25
Categorie Soggetti
Mathematics
Journal title
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00659266 → ACNP
Volume
137
Issue
652
Year of publication
1999
Database
ISI
SICI code
0065-9266(199901)137:652<1:AFOSMO>2.0.ZU;2-S
Abstract
We show that a set of local admissible fields generates a vertex algebra. F or an affine Lie algebra (g) over tilde we construct the corresponding leve l Ic vertex operator algebra and we show that level k highest weight (g) ov er tilde-modules are modules for this vertex operator algebra. We determine the set of annihilating fields of level k standard modules and we study th e corresponding loop (g) over tilde module-the set of relations that define s standard modules. In the case when (g) over tilde is of type A(1)((1)), w e construct bases of standard modules parameterized by colored partitions a nd, as a consequence, we obtain a series of Rogers-Ramanujan type combinato rial identities.