This paper describes the ontogeny, breakdown and absorption of the radular
teeth of cephalopods and, for the first time, considers the function of the
'bolsters' or radular support muscles.
The radular ribbon, which bears many regularly arranged transverse rows of
teeth one behind the other, lies in a radular canal that emerges from the r
adular sac. Here the radular teeth are formed by a set of elongate cells wi
th microvilli, the odontoblasts. These are organized into two layers, the o
uter producing the radular membrane and the bases of the teeth, the inner p
roducing the cusps. The odontoblasts also secrete the hyaline shield and th
e teeth on the lateral buccal palps, when these are present. At the front e
nd of the radular ribbon the teeth become worn in feeding and are replaced
from behind by new ones formed continuously in the radular sac, so that the
whole ribbon moves forward during ontogeny. Removal of the old teeth is ac
hieved by cells in the radular organs; these cells, which are formed from m
odified odontoblasts ('odontoclasts'), dissolve the teeth and membranes and
absorb them. There is a subradular organ in all cephalopods. In Octopus vu
lgaris, which bores into mollusc shells and crustacean carapaces, it is esp
ecially well developed and there is also a supraradular organ.
A characteristic feature of the cephalopod radular apparatus is the pair of
large radular support muscles or 'bolsters'. Their function seems never to
have been investigated, but experiments reported here show that when they
elongate, the radular teeth become erect at the bending plane and splayed,
presumably enhancing their ability to rake food particles into the pharynx.
The bolsters of Octopus function as muscular hydrostats: because their vol
ume is fixed, contraction of their powerful transverse muscles causes them
to elongate. In decapods and in nautiloids each bolster contains a 'support
rod' of semi-fluid material, as well as massive transverse musculature. Th
is rod may elongate to erect the radular teeth. At the extreme front end of
the bolsters in Octopus there are many nerve fibres that may constitute a
receptor organ signalling the movements of the radula against hard material
. Such nerves are absent from decapods and from octopods that do not bore h
oles.
The buccal mass of Nautilus is massive, with heavily calcified tips to the
beaks and a wide radular ribbon, with 13 rather than nine elements in each
row. Nevertheless all the usual coleoid features are present in the radular
apparatus and the teeth are formed and broken down in the same way. Howeve
r, Nautilus has a unique structure, the radular appendage. This comprises a
papillate mass extending over the palate in the midline and forming paired
lateral masses that are in part secretory. The organ is attached to the fr
ont of the radula by muscles and connective tissue. Its function is unknown
.