Heat kernel and maximal L-p-L-q estimates: the non-autonomous case

Citation
M. Hieber et S. Monniaux, Heat kernel and maximal L-p-L-q estimates: the non-autonomous case, CR AC S I, 328(3), 1999, pp. 233-238
Citations number
9
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
328
Issue
3
Year of publication
1999
Pages
233 - 238
Database
ISI
SICI code
0764-4442(199902)328:3<233:HKAMLE>2.0.ZU;2-8
Abstract
Consider the non-autonomous initial value problem u'(t) + A(t)u(t) = f(t), u(0) = 0, where - A(t) is for each t is an element of [0, T], the generator of a bounded analytic semigroup on L-2 (Omega). We prove maximal L-p - L-q a priori estimates for the solution of the above equation provided the sem igroups Tt are associated to kernels which satisfies an upper Gaussian boun d and {A(t), t is an element of [0, T]} fulfills a Acquistapace-Terreni com mutator condition. (C) Academie des Sciences/Elsevier, Paris.