Quantum orthogonal planes: ISOq,r(N) and SOq,r(N) bicovariant calculi and differential geometry on quantum Minkowski space

Citation
P. Aschieri et al., Quantum orthogonal planes: ISOq,r(N) and SOq,r(N) bicovariant calculi and differential geometry on quantum Minkowski space, EUR PHY J C, 7(1), 1999, pp. 159-175
Citations number
73
Categorie Soggetti
Physics
Journal title
EUROPEAN PHYSICAL JOURNAL C
ISSN journal
14346044 → ACNP
Volume
7
Issue
1
Year of publication
1999
Pages
159 - 175
Database
ISI
SICI code
1434-6044(199902)7:1<159:QOPIAS>2.0.ZU;2-4
Abstract
We construct differential calculi on multiparametric quantum orthogonal pla nes in any dimension N. These calculi are bicovariant under the action of t he full inhomogeneous (multiparametric) quantum group ISOq,r(N), and do con tain dilatations. If we require bicovariance only under the quantum orthogo nal group SOq,r(N), the calculus on the q-plane can be expressed in terms o f its coordinates x(a), differentials dx(a) and partial derivatives partial derivative(a) without the need of dilatations, thus generalizing known res ults: to the multiparametric case. Using real forms that lead to the signat ure (n + 1, m) with m = n - 1, n, n + 1, we find ISOq,r(n + 1, m) and SOq,r (n + 1, m) bicovariant calculi on the multiparametric quantum spaces. The p articular case of the quantum Minkowski space ISOq,r(3, 1)/SOq,r(3, 1) is t reated in detail. The conjugated partial derivatives partial derivative(a)* can be expressed as linear combinations of the partial derivative(a). This allows a deformation of the phase-space where no additional operators (bes ides x(a) and p(a)) are needed.