Scaling properties for the radius of convergence of a Lindstedt series: The standard map

Citation
A. Berretti et G. Gentile, Scaling properties for the radius of convergence of a Lindstedt series: The standard map, J MATH P A, 78(2), 1999, pp. 159-176
Citations number
11
Categorie Soggetti
Mathematics
Journal title
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
ISSN journal
00217824 → ACNP
Volume
78
Issue
2
Year of publication
1999
Pages
159 - 176
Database
ISI
SICI code
0021-7824(199902)78:2<159:SPFTRO>2.0.ZU;2-Z
Abstract
By using a version of the tree expansion for the standard map, we prove tha t the radius of convergence of the corresponding Lindstedt series satisfies a scaling property as the (complex) rotation number tends to any rational (resonant) value, non-tangentially to the real axis. By suitably rescaling the perturbative parameter epsilon, the function conjugating the dynamic on the (KAM) invariant curve with given rotation number to a linear rotation has a well defined limit, which can be explicitly computed. (C) Elsevier, P aris.