Finite arithmetic subgroups of GL(n)

Authors
Citation
M. Mazur, Finite arithmetic subgroups of GL(n), J NUMBER TH, 75(1), 1999, pp. 109-119
Citations number
7
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF NUMBER THEORY
ISSN journal
0022314X → ACNP
Volume
75
Issue
1
Year of publication
1999
Pages
109 - 119
Database
ISI
SICI code
0022-314X(199903)75:1<109:FASOG>2.0.ZU;2-Y
Abstract
We discuss the following conjecture of Kitaoka: If a finite subgroup, G of GL(n)(O-K) is invariant under the action of Gal(K/Q) then it is contained i n GL(n)(K-ab). Here O-K is the ring of integers in a finite Galois extensio n K of Q and K-ab is the maximal abelian subextension of K. Our main result reduces this conjecture to a special case of elementary abelian p-groups G . Also, we construct some new examples which negatively answer a question o f Y. Kitaoka. (C) 1999 Academic Press.