A posteriori error estimation for the finite element method-of-lines solution of parabolic problems

Citation
S. Adjerid et al., A posteriori error estimation for the finite element method-of-lines solution of parabolic problems, MATH MOD M, 9(2), 1999, pp. 261-286
Citations number
30
Categorie Soggetti
Mathematics
Journal title
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
ISSN journal
02182025 → ACNP
Volume
9
Issue
2
Year of publication
1999
Pages
261 - 286
Database
ISI
SICI code
0218-2025(199903)9:2<261:APEEFT>2.0.ZU;2-5
Abstract
Babuska and Yu constructed a posteriori estimates for finite element discre tization errors of linear elliptic problems utilizing a dichotomy principal stating that the errors of odd-order approximations arise near element edg es as mesh spacing decreases while those of even-order approximations arise in element interiors. We construct similar a posteriori estimates for the spatial errors of finite element method-of-lines solutions of linear parabo lic partial differential equations on square-element meshes. Error estimate s computed in this manner are proven to be asymptotically correct; thus, th ey converge in strain energy under mesh refinement at the same rate as the actual errors.