Electron-, anion-, and proton-transfer processes associated with the redoxchemistry of Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) and its protonated form [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)]BF4 at microcrystal-electrode-solvent (Electrolyte) interfaces
Am. Bond et al., Electron-, anion-, and proton-transfer processes associated with the redoxchemistry of Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) and its protonated form [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)]BF4 at microcrystal-electrode-solvent (Electrolyte) interfaces, ORGANOMETAL, 18(4), 1999, pp. 642-649
Voltammograms of microcrystals of Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) and
[Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)]BF4 mechanically attached to graphit
e or gold electrodes are well-defined when the electrode is placed in (70:3
0) water/acetonitrile (0.1 M electrolyte) media. The simplest processes at
the electrode-solvent (electrolyte) interface are the chemically reversible
oxidation of Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4), Fe(eta(5)-C5Ph5)((eta(6
)-C6H5)C5Ph4)((solid)) + X-(solution(-)) reversible arrow [Fe(eta(5)-C5Ph5)
((eta(6)-C6H5)C5Ph4)][X]((solid)) + e(-) when X- is the electrolyte anion (
ClO4-, BF4-, Cl-, or F-), and the chemically reversible reduction of [Fe(et
a(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H]BF4, [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)
][BF4]((solid)) + e(-) reversible arrow Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4
H)((solid)) + BF4(solution-), when BF4- is the electrolyte anion. Anion exc
hange between BF4(solid-) in [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)]BF4 and
the electrolyte anion, X-(solution(-)), is rapid so that the potentials of
both processes are dependent on the electrolyte anion. Cyclic voltammogram
s scanned over a potential range encompassing both processes show that inte
rconversion of [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)](+) and Fe(eta(5)-C5P
h5)((eta(6)-C6H5)C5Ph4) occurs when either [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C
5Ph4H)](+) or Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) is initially present on
the electrode surface until ultimately a voltammogram containing responses
for both processes is achieved for a given electrolyte. Furthermore, the re
lative proportion of the two processes is a function of the "pH" of the sol
ution phase, implying that the interfacial reaction Fe(eta(5)-C5Ph5)((eta(6
)-C6H5)C5Ph4) ((solid)) + H-(solution(+)) + X-(solution(-)) reversible arro
w [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)][X]((solid)) is chemically reversi
ble.
While interconversion of Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) and [Fe(eta(5
)-C5Ph5)((eta(6)-C6H5)C5Ph4H)](+) is slow, electrochemical oxidation of Fe(
eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4) ((solid)) to [Fe(eta(5)-C5Ph5)((eta(6)-C6
H5)C5Ph4)][X](2(solid)) leads to very rapid formation of [Fe(eta(5)-C5Ph5)(
(eta(6)-C6H5)C5Ph4H)][X]((solid)), possibly via the reaction scheme Fe(eta(
5)-C5Ph5)((eta(6)-C6H5)C5Ph4)((solid)) + X-(solution(-)) reversible arrow [
Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4)][X]((solid)) + e(-); [Fe(eta(5)-C5Ph5)
((eta(6)-C6H5)C5Ph4)][X]((solid)) + X-solution(-) reversible arrow [Fe(eta(
5)-C5Ph5)((eta(6)-C6H5)C5Ph4)][X](2(solid)) + e(-); 2[Fe(eta(5)-C5Ph5)((eta
(6)-C6H5)C5Ph4)][X](2(solid)) + 2H(2)O --> 2[Fe(eta(5)-C5Ph5)((eta(6)-C6H5)
C5Ph4H)][X]((solid)) + O-2(solution) + 2H((solution)(+)) + 2X((solution)(-)
). However, the possible involvement of radical-based pathways in the conve
rsion of [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4)][X](2(solid)) to [Fe(eta(5)-
C5Ph5)((eta(6)-C6Ph5)C5Ph4H)][X]((solid)) cannot be excluded. An additional
process, which is believed to be ligand based, is observed at a very posit
ive potential. Electrospray mass spectrometric data confirm that [Fe(eta(5)
-C5Ph5)((eta(6)-C6H5)C5Ph4)](+) is a product of oxidation of the parent com
pound and that conversion of both Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4)((sol
id)) and its cation to [Fe(eta(5)-C5Ph5)((eta(6)-C6H5)C5Ph4H)]X-(solid) occ
urs, while the electrochemical quartz crystal microbalance data verify that
anion transport across the electrode-solid-solvent (electrolyte) interface
accompanies the electron- and proton-transfer reactions, thereby achieving
charge neutralization.