The fuzzy integral on produce spaces for NSA measures

Citation
Es. Diaz et Fs. Garcia, The fuzzy integral on produce spaces for NSA measures, FUZ SET SYS, 103(3), 1999, pp. 465-472
Citations number
17
Categorie Soggetti
Engineering Mathematics
Journal title
FUZZY SETS AND SYSTEMS
ISSN journal
01650114 → ACNP
Volume
103
Issue
3
Year of publication
1999
Pages
465 - 472
Database
ISI
SICI code
0165-0114(19990501)103:3<465:TFIOPS>2.0.ZU;2-#
Abstract
This paper deals with the study of fuzzy integrals defined as a generalizat ion of Kruse's fuzzy integral [4], for fuzzy NSA measures given by Weber [1 7] as opposed to Sugeno's measures. Several properties and convergence theo rems, such as the monotone convergence theorem, the dominated convergence t heorem and Fatou's lemma are shown for this fuzzy integral. A fuzzy NSA measure will be constructed on a product space, based on produc t of these kinds of measures with the same additive generator and we extend the above integral on to a product space. Further, a version of Fubini's theorem will be proved. (C) 1999 Elsevier Sc ience B.V. All rights reserved.