NONGENERIC EIGENVALUE PERTURBATIONS OF JORDAN BLOCKS

Authors
Citation
Yy. Ma et A. Edelman, NONGENERIC EIGENVALUE PERTURBATIONS OF JORDAN BLOCKS, Linear algebra and its applications, 273, 1998, pp. 45-63
Citations number
9
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00243795
Volume
273
Year of publication
1998
Pages
45 - 63
Database
ISI
SICI code
0024-3795(1998)273:<45:NEPOJB>2.0.ZU;2-#
Abstract
We show that if an n X n Jordan block is perturbed by an O(epsilon) up per k-Hessenberg matrix (k subdiagonals including the main diagonal), then generically the eigenvalues split into p rings of size k and one of size r (if r not equal 0), where n = pk + r. This generalizes the f amiliar result (k = n, p = 1, r = 0) that generically the eigenvalues split into a ring of size n. We compute the radii of the rings to firs t order and generalize the result in a number of directions involving multiple Jordan blocks of the same size. (C) 1998 Elsevier Science Inc .