EIGENVALUES AND EIGENFUNCTIONS OF DIAGONA LLY DOMINANT ENDOMORPHISMS IN MIN-MAX ANALYSIS

Citation
M. Gondran et M. Minoux, EIGENVALUES AND EIGENFUNCTIONS OF DIAGONA LLY DOMINANT ENDOMORPHISMS IN MIN-MAX ANALYSIS, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 325(12), 1997, pp. 1287-1290
Citations number
10
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
07644442
Volume
325
Issue
12
Year of publication
1997
Pages
1287 - 1290
Database
ISI
SICI code
0764-4442(1997)325:12<1287:EAEODL>2.0.ZU;2-Y
Abstract
We present here a complete characterization of eigenvalues and eigenfu nctions of a diagonally dominant endomorphism A (For All x, For All y, A(x,x) = theta(A), A(x,y) equal to or greater than theta(A)) based on the dioid (R, Min, Max) and defined for any functional f as: [GRAPHIC S] It is shown in particular that any real value gimel > theta(A) is a n eigenvalue and that the associated eigensemimodule has a unique mini mal generator.