M. Gondran et M. Minoux, EIGENVALUES AND EIGENFUNCTIONS OF DIAGONA LLY DOMINANT ENDOMORPHISMS IN MIN-MAX ANALYSIS, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 325(12), 1997, pp. 1287-1290
We present here a complete characterization of eigenvalues and eigenfu
nctions of a diagonally dominant endomorphism A (For All x, For All y,
A(x,x) = theta(A), A(x,y) equal to or greater than theta(A)) based on
the dioid (R, Min, Max) and defined for any functional f as: [GRAPHIC
S] It is shown in particular that any real value gimel > theta(A) is a
n eigenvalue and that the associated eigensemimodule has a unique mini
mal generator.