Pn. Dowling et al., ASYMPTOTICALLY ISOMETRIC COPIES OF C(0) IN BANACH-SPACES, Journal of mathematical analysis and applications, 219(2), 1998, pp. 377-391
If Gamma is an uncountable set, then any equivalent renorming of c(0)(
Gamma) contains an asymptotically isometric copy of c(0). If Y is an i
nfinite dimensional closed subspace of (c(0)\\.\\infinity), then Y con
tains an asymptotically isometric copy of c(0). If X and Y are two inf
inite dimensional Banach spaces and if X contains an asymptotically is
ometric copy of c(0), then the injective tensor product of X and Y, X
(x) over cap(e)Y, contains a complemented asymptotically isometric cop
y of c(0). similarly, if X contains an asymptotically isometric copy o
f c(0), then the Lebesgue-Bochner space L-p([0, 1], X) contains a comp
lemented asymptotically isometric copy of c(0). (C) 1998 Academic Pres
s.