EQUIVARIANT TORSION OF LOCALLY SYMMETRICAL SPACES

Authors
Citation
A. Deitmar, EQUIVARIANT TORSION OF LOCALLY SYMMETRICAL SPACES, Pacific journal of mathematics, 182(2), 1998, pp. 205-227
Citations number
16
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00308730
Volume
182
Issue
2
Year of publication
1998
Pages
205 - 227
Database
ISI
SICI code
0030-8730(1998)182:2<205:ETOLSS>2.0.ZU;2-D
Abstract
In this paper we express the equivariant torsion of an Hermitian local ly symmetric space in terms of geometrical data from closed geodesics and their Poincare maps. For a Hermitian locally symmetric space Y and a holomorphic isometry theta we define a zeta function Z(theta)(s) fo r R(s) >> 0, whose definition involves closed geodesics and their Poin care maps. We show that Z(theta) extends meromorphically to the entire plane and that its leading coefficient at s = 0 equals the quotient o f the equivariant torsion over the equivariant L-2-torsion.