M. Hamedoun et al., HIGH-TEMPERATURE SERIES EXPANSION OF THE SPIN CORRELATION-FUNCTIONS IN B-SPINEL LATTICE, Journal of physics. Condensed matter, 10(16), 1998, pp. 3611-3623
High-temperature series expansion of the spin correlation functions on
the B-spinel lattice are computed to order 6 in beta = 1/k(B)T for He
isenberg model having both nearest- and next-nearest-neighbour exchang
e integrals. The results are given for various neighbour correlations
(up to the third). The behaviour with the temperature and the site dil
ution is presented. The obtained results provide a useful tool for a s
traightforward interpretation and understanding of experimental data T
he approach is applied to the experimental results of the B-spinel ZnC
r2xAl2-2xS4 in the dilution range 0.85 less than or equal to x less th
an or equal to 1. The critical temperature and the critical exponents
for the susceptibility and the correlation length are deduced by apply
ing the Pade approximant methods.-The following estimates are obtained
for the familiar critical exponents: nu = 0.691 +/- 0.011 and gamma =
1.382 +/- 0.012. These values are not sensitive to the dilution ratio
x. The transition temperatures as a function of x obtained by the pre
sent theory are found to be in excellent agreement with the experiment
al ones.