The aim of this paper is to survey and discuss, very briefly, some way
s how to introduce, within the framework of possibilistic measures, a
notion analogous to that of conditional probability measure in probabi
lity theory. The adjective ''analogous'' in the last sentence is to me
an that the conditional possibilistic measures should play the role of
a mathematical tool to actualize one's degrees of beliefs expressed b
y an a priori possibilistic measure, having obtained some further info
rmation concerning the decision problem under uncertainty in question.
The properties and qualities of various approaches to conditionalizin
g can be estimated from various points of view. Here we apply the idea
according to which the properties of independence relations defined b
y particular conditional possibilistic measures are confronted with th
ose satisfied by the relation of statistical (or stochastical) indepen
dence descending from the notion of conditional probability measure. F
or the reader's convenience the notions of conditional probability and
statistical independence are recalled in the introductory chapter.