THE GROTHENDIECK-PIETSCH DOMINATION PRINCIPLE FOR NONLINEAR SUMMING INTEGRAL-OPERATORS

Authors
Citation
K. Lermer, THE GROTHENDIECK-PIETSCH DOMINATION PRINCIPLE FOR NONLINEAR SUMMING INTEGRAL-OPERATORS, Studia Mathematica, 129(2), 1998, pp. 97-112
Citations number
11
Categorie Soggetti
Mathematics,Mathematics
Journal title
ISSN journal
00393223
Volume
129
Issue
2
Year of publication
1998
Pages
97 - 112
Database
ISI
SICI code
0039-3223(1998)129:2<97:TGDPFN>2.0.ZU;2-#
Abstract
We transform the concept of p-summing operators, 1 less than or equal to p < infinity, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Sigma, X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domina tion principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S, X)-spaces. For p-summing Hammerstein ope rators we derive the existence of control measures and p-summing exten sions to B(Sigma, X)-spaces.