An accurate numerical visualization for streamlines of fluid flows is a fun
damental tool in computational fluid dynamics. However, the standard finite
element formulation to compute streamlines suffers from the disadvantage o
f requiring the determination of boundary integrals. This shortcoming requi
res the implementation of two distinct mappings in the finite element code,
one for the interior domain employing two-dimensional elements and another
with one-dimensional elements to approximate the boundary domain. In this
article we introduce an efficient way to determine the streamlines for the
above-mentioned flows, which does not need the computation of contour integ
rals. In order to illustrate the good performance of the alternative formul
ation proposed, we capture the streamlines of two classical viscous models:
Stokes and Navier-Stokes flows. Copyright (C) 1999 John Wiley & Sons, Ltd.