We study fractional Fourier transformation in the metaxial regime of geomet
ric optics. Two commonly used optical arrangements that perform fractional
Fourier transformation are a symmetric thick lens and a length of graded-in
dex waveguide. By means of Lie methods in phase space, we can correct some
of their aberrations: for the first, through deforming the lens surfaces to
a polynomial shape, and for the second, by warping the output screen at th
e end of the waveguide. We correct the planar cases to third, fifth, and se
venth aberration orders; checks are provided on the convergence of aberrati
on series in phase space. We add some comments on the usefulness of these c
orrected devices for fractional transformers in scalar wave optics. (C) 199
9 Optical Society of America [S0740-3232(99)00904-7].