SHAPE-DISCRIMINATION IN MATHEMATICAL MORP HOLOGY

Citation
J. Mattioli et M. Schmitt, SHAPE-DISCRIMINATION IN MATHEMATICAL MORP HOLOGY, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 317(8), 1993, pp. 807-810
Citations number
8
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
317
Issue
8
Year of publication
1993
Pages
807 - 810
Database
ISI
SICI code
0764-4442(1993)317:8<807:SIMMH>2.0.ZU;2-A
Abstract
To any compact planar simply connected shape X, is associated its eros ion curve defined by PSI(X): r is-an-element-of R+ --> A (X - r B) whe re A (X) represents the surface area of X and X - r B the erosion of X by the hall of radius r. This Note presents some answers to the quest ion: characterize all the Y verifying PSI(X) = PSI(Y) for a given X. U nder some regularity conditions, PSI(X) is expressed as an integral of the border distance function q(X) along the skeleton of this shape. I t is shown that the erosion curve is not affected if one bends the arc s of the skeleton : PSI(X) quantifies ''soft'' shapes. Moreover, in th e generic case, PSI(X)'' characterises five possible cases of behaviou r of the skeleton: simple point (local maximum, local minimum or neith er of q(X)), multiple point (local maximum or not of q(X)).