THE LOCAL LANGLANDS CORRESPONDENCE FOR GL(N) AND CONDUCTORS OF PAIRS

Citation
Cj. Bushnell et al., THE LOCAL LANGLANDS CORRESPONDENCE FOR GL(N) AND CONDUCTORS OF PAIRS, Annales Scientifiques de l'Ecole Normale Superieure, 31(4), 1998, pp. 537-560
Citations number
35
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00129593
Volume
31
Issue
4
Year of publication
1998
Pages
537 - 560
Database
ISI
SICI code
0012-9593(1998)31:4<537:TLLCFG>2.0.ZU;2-L
Abstract
Let p be a prime number and F a finite extension of Q(p). Let n be a p ositive integer. To each admissible irreducible supercuspidal represen tation pi of GL(n) (F), M. Harris has attached a class sigma(pi) of se misimple continuous n-dimensional representations of the Weil group of F. We show that the map pi bar right arrow sigma(pi) induces a biject ion between equivalence classes of admissible irreducible supercuspida l representations of GL(n)(F) and equivalence classes of continuous ir reducible n-dimensional representations of the Well group of F. In add ition, we show that the correspondences sigma preserve conductors for pairs. (C) Elsevier, Paris.