LATTICE THEORY PREDICTIONS OF NONRANDOM BEHAVIOR IN SQUARE-WELL FLUIDS

Citation
C. Schultze et Md. Donohue, LATTICE THEORY PREDICTIONS OF NONRANDOM BEHAVIOR IN SQUARE-WELL FLUIDS, Industrial & engineering chemistry research, 37(8), 1998, pp. 2947-2956
Citations number
47
Categorie Soggetti
Engineering, Chemical
ISSN journal
08885885
Volume
37
Issue
8
Year of publication
1998
Pages
2947 - 2956
Database
ISI
SICI code
0888-5885(1998)37:8<2947:LTPONB>2.0.ZU;2-P
Abstract
A new attractive term for the equation of state (EOS) of square-well f luids has been developed by using an off-lattice mean-field term in an approximate solution for the lattice gas. van der Waals theory predic ts that the attractive contribution to the compressibility factor is p roportional to the inverse of temperature and volume. However, there a re deviations from van der Waals behavior due to both molecular repuls ions and molecular attractions. Here, deviations due to repulsions are predicted by first-order perturbation theory and deviations due to at tractions are predicted by an approximation to the Ising model. It is shown that this new EOS shows very good agreement with simulation data for square-well fluids. The derivation of the lattice term allows rig orous extension of the EOS to mixtures without using empirical mixing rules. The EOS is applied to mixtures with an extreme difference in th e attractive potentials (i.e., mixtures of hard-sphere and square-well molecules of the same core size). This exaggerates the deviations fro m random mixing. Mixtures of equal-sized, square-well molecules with d ifferent well depths are discussed also. Agreement with perturbation t heory and computer simulations is very good.