FINDING THE DETOUR-CRITICAL EDGE OF A SHORTEST-PATH BETWEEN 2 NODES

Citation
E. Nardelli et al., FINDING THE DETOUR-CRITICAL EDGE OF A SHORTEST-PATH BETWEEN 2 NODES, Information processing letters, 67(1), 1998, pp. 51-54
Citations number
3
Categorie Soggetti
Computer Science Information Systems","Computer Science Information Systems
ISSN journal
00200190
Volume
67
Issue
1
Year of publication
1998
Pages
51 - 54
Database
ISI
SICI code
0020-0190(1998)67:1<51:FTDEOA>2.0.ZU;2-0
Abstract
Let P-G(r, s) denote a shortest path between two nodes r and s in an u ndirected graph G with nonnegative edge weights. A detour at a node u epsilon P-G(r, s) = (r,..., u, v,...,s) is defined as a shortest path PG-e(u,s) from u to s which does not make use of (u, v). In this paper we focus on the problem of finding an edge e = (u, v) epsilon P-G(r, s) whose removal produces a detour at node u such that the length of P G-e(u, s) minus the length of P-G(u, s) is maximum. We call such an ed ge a detour-critical edge. We will show that this problem can be solve d in O(m + n log n) time, where n and in denote the number of nodes an d edges in the graph, respectively. (C) 1998 Elsevier Science B.V. All rights reserved.