ON LINEAR-SUBSPACES OF NILPOTENT ELEMENTS IN A LIE-ALGEBRA

Citation
R. Meshulam et N. Radwan, ON LINEAR-SUBSPACES OF NILPOTENT ELEMENTS IN A LIE-ALGEBRA, Linear algebra and its applications, 279(1-3), 1998, pp. 195-199
Citations number
4
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00243795
Volume
279
Issue
1-3
Year of publication
1998
Pages
195 - 199
Database
ISI
SICI code
0024-3795(1998)279:1-3<195:OLONEI>2.0.ZU;2-I
Abstract
Let g be a complex semi-simple Lie algebra. Extending a result of Gers tenhaber on spaces of nilpotent matrices, it is shown that if W subset of g is a linear subspace of ed nilpotent elements then dim W less th an or equal to 1/2 (dim g - rank g). Similarly, it is shown that the m aximal dimension of a linear space of symmetric nilpotent nxn complex matrices is [1/4n2] (C) 1998 Elsevier Science Inc. All rights reserved .