MATHEMATICAL ASPECTS OF THE FLUCTUATING BARRIER PROBLEM - EXISTENCE OF EQUILIBRIUM AND RELAXATION SOLUTIONS

Citation
P. Pechukas et J. Ankerhold, MATHEMATICAL ASPECTS OF THE FLUCTUATING BARRIER PROBLEM - EXISTENCE OF EQUILIBRIUM AND RELAXATION SOLUTIONS, Chemical physics, 235(1-3), 1998, pp. 5-10
Citations number
4
Categorie Soggetti
Physics, Atomic, Molecular & Chemical
Journal title
ISSN journal
03010104
Volume
235
Issue
1-3
Year of publication
1998
Pages
5 - 10
Database
ISI
SICI code
0301-0104(1998)235:1-3<5:MAOTFB>2.0.ZU;2-R
Abstract
For the simplest fluctuating barrier rate problem - diffusion in a sym metric double well over a barrier fluctuating randomly between 'high' and 'low' - we prove the existence of equilibrium and relaxation eigen vectors of the corresponding matrix of Smoluchowski diffusion operator s, thereby establishing the validity of rate calculations for this pro blem by the eigenvector-eigenvalue method. (C) 1998 Elsevier Science B .V. All rights reserved.