Jl. Guermond et L. Quartapelle, ON THE APPROXIMATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS BY FINITE-ELEMENT PROJECTION METHODS, Numerische Mathematik, 80(2), 1998, pp. 207-238
This paper provides an analysis of a fractional-step projection method
to compute incompressible viscous flows by means of finite element ap
proximations. The analysis is based on the idea that the appropriate f
unctional setting for projection methods must accommodate two differen
t spaces for representing the velocity fields calculated respectively
in the viscous and the incompressible half steps of the method. Such a
theoretical distinction leads to a finite element projection method w
ith a Poisson equation for the incremental pressure unknown and to a v
ery practical implementation of the method with only the intermediate
velocity appearing in the numerical algorithm. Error estimates in fini
te time are given. An extension of the method to a problem with unconv
entional boundary conditions is also considered to illustrate the flex
ibility of the proposed method.