M. Delpino et al., THE FREDHOLM ALTERNATIVE AT THE FIRST EIGENVALUE FOR THE ONE-DIMENSIONAL P-LAPLACIAN, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 327(5), 1998, pp. 461-465
In this work we study the range of the operator u bar right arrow (/u'
/(p - 2)u')' + lambda(1) /u/(p - 2)u, u(0) = u(T) = 0, p > 1. We prove
that all functions h is an element of C-1 [0, T] satisfying integral(
0)(T) h(t) sin(p) pi(p)t/T dt = 0 lie in the range, but that if p not
equivalent to 2 and h = 0, the solution set is bounded. Here sinp pi(p
)t/T a first eigenfunction associated to lambda(1). (C) Academie des S
ciences/Elsevier, Paris.