Exponential codimension growth of PI algebras: An exact estimate

Citation
A. Giambruno et M. Zaicev, Exponential codimension growth of PI algebras: An exact estimate, ADV MATH, 142(2), 1999, pp. 221-243
Citations number
10
Categorie Soggetti
Mathematics
Journal title
ADVANCES IN MATHEMATICS
ISSN journal
00018708 → ACNP
Volume
142
Issue
2
Year of publication
1999
Pages
221 - 243
Database
ISI
SICI code
0001-8708(19990325)142:2<221:ECGOPA>2.0.ZU;2-S
Abstract
Let A be an associative PI-algebra over a field F of characteristic zero. B y studying the exponential behavior of the sequence of codimensions {c(n)(A )} of A, we prove that Inv(A)=lim(n-->infinity )(n)root c(n)(A) always exis ts and is an integer. We also give an explicit way for computing such integ er: let B be a finite dimensional Z(2)-graded algebra whose Grassmann envel ope G(B) satisfies the same identities of A; then Inv(A)= Inv(G(B))= dim C- (0)+ dim C-(1) where C-(0)+ C-(1) is a suitable Z(2)-graded semisimple suba lgebra of B. (C) 1999 Academic Press.